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Abstract. Next generation communication networks are moving towards au-
tonomous infrastructures that are capable of working unattended under dynam-
ically changing conditions. The new network architecture involves interactions
among unsophisticated entities which may be characterized by constrained re-
sources. From this mass of interactions collective unpredictable behavior emerges
in terms of traffic load variations and link capacity fluctuations, leading to conges-
tion. Biological processes found in nature exhibit desirable properties e.g. self-
adaptability and robustness, thus providing a desirable basis for such computing
environments. This study focuses on streaming applications in sensor networks
and on how congestion can be prevented by regulating the rate of each traffic
flow based on the Lotka-Volterra population model. Our strategy involves mini-
mal exchange of information and computation burden and is simple to implement
at the individual node. Performance evaluations reveal that our approach achieves
adaptability to changing traffic loads, scalability and fairness among flows, while
providing graceful performance degradation as the offered load increases.

Key words: autonomous decentralized networks, congestion control, lotka-volterra

1 Introduction

Rapid technological advances and innovations in the area of autonomous systems push
the vision of Ambient Intelligence from concept to reality. Networks of autonomous
sensor devices offer exciting new possibilities for achieving sensory omnipresence:
small, (often) inexpensive, untethered sensor devices can observe and measure vari-
ous environmental parameters, thereby allowing real-time and fine-grained monitor-
ing of physical spaces around us. Autonomous decentralized networks (ADNs) as for
example, Wireless Sensor Networks (WSNs) [1], can be used as platforms for health
monitoring, battlefield surveillance, environmental observation, etc.

Typically, WSNs consist of small (and sometimes cheap), cooperative devices (nodes)
which may be constrained by computation capability, memory space, communication
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bandwidth and energy supply. The uncontrolled use of the scarce network resources is
able to provoke congestion. Thus, there is an increased need to design novel congestion
control strategies possessing self-* properties like self-adaptability, self-organization as
well as robustness and resilience, which are vital to the mission of dependable WSNs.
Biological processes which are embedded in decentralized, self-organizing and adapt-
ing environments, provide a desirable basis for computing environments that need to
exhibit self-* properties. In addition, their constrained nature necessitates simple to im-
plement strategies at individual node level with minimal exchange of information.

Simple mathematical biology models [2] which aim at modeling biological processes
using analytical techniques and tools are often used to study non-linear systems. Pop-
ulation dynamics has traditionally been the dominant branch of mathematical biology
which studies how species populations change in time and space and the processes
causing these changes. Information about population dynamics is important for pol-
icy making and planning and in our case is used for designing a congestion control
policy. In this study, nature inspired models are employed to design a scalable and
self-adaptable congestion control algorithm for streaming media in WSNs. Based on
the Lotka-Volterra (LV) competition model, a decentralized approach is proposed
that regulates the rate of every flow in order to prevent congestion in WSNs. The
LV-based congestion control (LVCC) mechanism is targeted for dependable wireless
multimedia WSNs [3] involving applications that require continuous stream of data.

Based on analytical evaluations performed in [4], the LVCC model guarantees that
the equilibrium point of the system ensures coexistence of all flows, with stability and
fairness among active flows when some conditions (presented below) are satisfied. In
this paper, the validity of the analytical results is further investigated by simulating
complex scenarios that cannot be formally tested. Performance evaluations are based on
simulation studies conducted in Matlab and in the network simulator NS2 [5], and focus
on scalability, graceful performance degradation, fairness and adaptability to changing
conditions. Results have shown that the LVCC approach provides adaptation to dynamic
network conditions providing scalability, fairness and graceful performance degradation
when multiple active nodes are involved.

The remainder of this paper is organized as follows. Section 2 deals with the prob-
lem of congestion in ADNs and discusses previous work. Section 3 presents the analogy
between ADNs and ecosystems. Section 4 proposes our bio-inspired mechanism. Sec-
tion 5 evaluates the performance of our mechanism in terms of stability, scalability and
fairness. Section 6 draws the conclusion and future work.

2 Congestion in AD Networks

There are mainly two types of congestion in WSNs: (a) queue-level congestion and (b)
channel-level congestion. Traditionally, either high queue occupancy or queue over-
flow (queue drops) were considered to be key symptoms of congestion (queue-level
congestion). However, simulation studies conducted by [10] and [11] revealed that
in WSNs where the wireless medium is shared using Carrier Sense Multiple Access
(CSMA)-like protocols, wireless channel contention losses can dominate queue drops
and increase quickly with offered load. The problem of channel losses (channel-level
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congestion) is worsened around hot spot areas, as for example, in the area of an event,
or around the sink. In the former case, congestion occurs if many nodes report the same
event concurrently, while in the latter case congestion is experienced due to the con-
verging (many-to-one) nature of packets from multiple sending nodes to a single sink
node. These phenomena result in the starvation of channel capacity in the vicinity of
senders, while the wireless medium capacity can reach its upper limit faster than queue
occupancy [12]. Queue-level congestion is mainly attributed to the constrained nature of
nodes consisting an autonomous decentralized network (e.g. limited memory and com-
putation power), whereas channel-level congestion can be influenced by the broadcast
nature of wireless networks as well as traffic variations.

Congestion causes energy waste, throughput reduction, increase in collisions and
retransmissions at the medium access control (MAC) layer, increase of queueing delays
and even information loss leading to the deterioration of the offered QoS and to the de-
crease of network lifetime. Also, under traffic load, multi-hop networks tend to penalize
packets that traverse a large number of hops, leading to large degrees of unfairness.

Congestion control (CC) policies in ADNs are fundamentally different than in the
traditional TCP/IP Internet, which is based on source-destination pair with reliable com-
munication model, also involving retransmission of lost packets. This reliable end-to-
end principle is tightly coupled to the client-server model of TCP/IP communication.
However, this model is not very effective for ADNs, where delivery of data to a gateway
(sink), without retransmission of any lost packets, is the normal objective. Their con-
strained and unpredictable nature provokes increased latency and high error rates that
may result in reduced responsiveness e.g. for end-to-end congestion detection, leading
to higher energy consumption (e.g. very high packet loss during long periods of con-
gestion). These problems drive the need for decentralized CC approaches adopting a
hop-by-hop model where all nodes along a network path can be involved in the proce-
dure. Each node should make decisions based only on local information since none of
them has complete knowledge of the system state.

Previous work on CC involving mathematical models of population biology was
proposed for the Internet on the basis of either improving the current TCP CC mecha-
nism [6] or providing a new way of combating congestion [7]. The study of [6] couples
the interaction of Internet entities that involved in CC mechanisms (routers, hosts) with
the predator-prey interaction. This model exhibits fairness and acceptable throughput
but slow adaptation to traffic demand. Recent work by [7] focuses on a new TCP CC
mechanism based on the LV competition model [8], [9] which is applied to the conges-
tion window updating mechanism of TCP. According to the authors, remarkable results
in terms of stability, convergence speed, fairness and scalability are exhibited. However,
these approaches are based on the end-to-end model of the Internet, which is completely
different from the hop-by-hop nature of ADNs. The novelty of our approach lies in
the fact that the LV model is applied to WSNs in a hop-by-hop manner.

3 Autonomous Decentralized Networks: An Ecosystem View

An ADN (Fig. 1) is considered to be analogous to an ecosystem. An ecosystem com-
prises of multiple species that live together and interact with each other as well as the
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non-living parts of their surroundings (i.e. resources) to meet their needs for survival
and coexist. Similarly, an autonomous network consists of a large number of cooper-
ative nodes. Each node has a buffer in order to store packets and is able to initiate a
traffic flow. All traffic flows compete with each other for available network resources
in an effort to reach one or more sink nodes by traversing a set of intermediate nodes
forming a multi-hop path. Just as in an ecosystem, the goal is the coexistence of flows.

To investigate the decentralized and autonomic nature of our approach, a network
is divided into smaller neighborhoods called sub-ecosystems. Each sub-ecosystem in-
volves all nodes that send traffic to a particular one-hop-away node. The traffic flows
initiated by those nodes play the role of competing species and the buffer (queue) capac-
ity of the receiving node can be seen as the limiting resource within the sub-ecosystem.

SN

SRN

buffer

SN

SN

SN

SN

Resources:
Buffer capacity

ECOSYSTEM

Competing Species:
Traffic flows

SUB-
ECOSYSTEM RN

buffer

RESOURCES / SPECIES
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Fig. 1. Competition in AD networks.

Within a virtual ecosystem, participant nodes may perform different roles. In partic-
ular, each node is able to either initiate a traffic flow i.e. is a source node (SN), or serve
as a relay node (RN) for multiple other flows, or perform both roles being a source-
relay node (SRN). Source nodes are basically located at the edges of a network (e.g.
leaf nodes) while relay nodes are internal nodes (e.g. backbone nodes). Our strategy
provides hop-by-hop rate adaptation by regulating the traffic flow rate at each sending
node. Each node is in charge of self-regulating and self-adapting the rate of its traf-
fic flow i.e., the rate at which it generates or forwards packets. All flows compete for
available buffer capacity at their one-hop-away receiving node. Each sending node is
expected to regulate its traffic flow rate in a way that limiting buffer capacities at all
receiving nodes along the network path towards the sink are able to accommodate all
received packets. The sending rate evolution of each flow will be driven by variations in
buffer occupancies of relay nodes along the network path towards the sink. Due to the
decentralized nature of our approach, each node will regulate its traffic flow rate using
local information (i.e. from neighbors). The number of bytes sent by a node within a
given period refers to the population size of its flow. From an ecosystem perspective,
the population size of each traffic flow (i.e. of each species) is affected by interactions
among competing flows (species) as well as the available resources (buffers) capacities.
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The proposed strategy is based on a deterministic competition model which involves
interactions among species that are able to coexist, in which the fitness of one species
is influenced by the presence of other species that compete for at least one limiting
resource. Competition among members of the same species is known as intra-specific
competition, while competition between individuals of different species is known as
inter-specific competition. One of the most studied mathematical models of population
biology, the LV competition model [8], [9], exhibits this behavior. The generalized form
of an n-species LV system is expressed by a system of ordinary differential equations:

dxi

dt
= rixi


1− βi

Ki
xi − 1

Ki




n∑

j=1,j 6=i

αijxj





 , (1)

for i = 1, ..., n, where xi(t) is the population size of species i at time t (xi(0) > 0), ri

is the intrinsic growth rate of species i in the absence of all other species, βi and αij

are the intra-specific and the inter-specific competition coefficients respectively. In the
classical LV model, the intra-specific competition coefficient β is always equal to one.
The reason for this is explained in [4]. Also Ki is the carrying capacity of species i i.e.,
the maximum number of individuals that can be sustained by the biotope in the absence
of all other species competing for the same resource. If only one resource exists and all
species (having the same carrying capacity K) compete for it, then K can be seen as
the resource’s capacity. Next we will build on this model to develop our strategy.

4 Nature-inspired Approach

This section distinguishes the roles of the different entities (i.e., SN, RN, and SRN)
involved in the congestion avoidance mechanism along the path towards a sink.
Source Node (SN) : Pure source nodes (SNs) are end-entities (Fig. 2) which are at-
tached to the rest of the network through an downstream node e.g., a relay node (RN),
or a source-relay node (SRN) located closer to the sink.
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flow_n
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flow_1
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SN

SN

SN
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Fig. 2. Source nodes competing for a limiting resource at their downstream node.

Each SN is expected to initiate a traffic flow when triggered by a specific event. The
transmission rate evolution of each flow is regulated by the solution of Eq. 1 (see Eq. 2)
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that gives the number of bytes sent xi by flow i. In order to be able to solve Eq. 1 for a
single node i, it is necessary to be aware of the aggregated number of bytes sent from
all other nodes

∑n
j=1,j 6=i xj which compete for the same resource. This quantity is de-

noted by Ci. In decentralized architectures, the underlying assumption of Ci-awareness
is quite unrealistic. However, each SN can indirectly obtain this information through
a small periodic backpressure signal sent from its downstream SRN/RN (father node)
containing the total number of bytes sent from all father’s children, denoted by BS.
Each node can evaluate its neighbors’ contribution Ci by subtracting its own contribu-
tion xi from the total contribution BS as expressed by: Ci =

∑n
j=1,j 6=i xj = BS−xi.

Thus, Eq. 1 becomes:

dxi

dt
= rxi

(
1− β

K
xi − α

K
Ci

)
, i = 1, ..., n. (2)

To obtain xi Eq. 2 is integrated :

xi(t) =
wxi(0)

βxi(0) + [w − βxi(0)] e−
wr
K t

, w = K − αCi (3)

The validity of Eq. 3 is based on the assumption that K − αCi > xi. If we set
α = 1 then, according to the inequality, the number of bytes sent from each node i (i.e.
xi) must not exceed the empty space left on the upstream node’s buffer (K − Ci) so
as to prevent buffer overflows. If we let K be a constant, the larger the value of α the
smaller the value of xi compared to the available buffer capacity of the upstream node.

According to [4], a network (ecosystem) of flows (species) that compete for a single
resource while the populations of bytes sent are regulated by Eq. 3 has a global non-
negative and asymptotically stable equilibrium point when inter-specific competition is
weaker than intra-specific competition i.e., β > α (α, β > 0). Under this condition, the
series of values generated by each SN converges to a global and asymptotically stable
coexistence solution given by Eq. 4. For a detailed proof of this concept refer to [4].

x∗i =
K

α(n− 1) + β
, i = 1, ..., n. (4)

In order to avoid buffer overflows, it needs to be ensured that when a system of
n active nodes converges to the coexistence solution, each node i will be able to send
less than or equal to K/n bytes. This is satisfied by Eq. 4 when α(n − 1) + β ≥ n
or β − α ≥ n ∗ (1 − α). If we set α ≥ 1 and require β > α (equilibrium stability
condition), then the aforementioned inequality is always satisfied.

Each SN evaluates Eq. 3 in an iterative manner. By iterative, we mean, roughly,
that Eq. 3 generates a series of values which correspond to number of bytes sent every
period T . The iterative form of Eq. 3 is expressed by:

xi((k + 1)T ) =
w(kT )xi(kT )

βxi(kT ) + [w(kT )− βxi(kT )] e−
w(kT )r

K T
(5)

Relay Node (RN) : Pure relay nodes (RNs) are internal entities which do not generate
any packets, but forward packets belonging to several flows traversing themselves which
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Fig. 3. Relay node creates a superflow which competes for downstream node’s buffer.

compete for their resources. The main function of a RN is to combine (or multiplex) all
incoming flows into a superflow and relay it to the dedicated downstream node (SRN or
RN) as shown in Fig. 3. However, the superflow competes with other flows destined to
the same downstream node (e.g., the flow originating from SN in Fig. 3). Hence, each
RN is in charge of acting on behalf of all active upstream nodes whose flows are passing
through it when evaluating the transmission rate of the superflow (i.e. number of bytes
sent from RN within period T ). As shown in Fig. 3, each one of the four flows of the
superflow as well as the flow originating from SN should be able to allocate equal share
of the downstream node’s limiting resource. Thus, each RN allocates resources for its
active upstream nodes based on a slightly modified expression of Eq. 5 as follows:

xRN ((k + 1)T ) = m

(
w(kT )H(kT )

βH(kT ) + [w(kT )− βH(kT )] e−
w(kT )r

K T

)
, (6)

where H(kT ) = xRN (kT )
m , w(kT ) = K − αC∗RN (kT ) and m is the total number

of active upstream nodes which belong to the tree having RN as root. The number
of bytes sent from a superflow within a period kT , namely xRN (kT ), is equal to the
aggregated number of bytes sent from m RN’s upstream source nodes which compete
for RN’s buffer. Each RN can calculate the number (m) of its active upstream nodes
by examining the source id field of each packet traversing itself. C∗RN (kT ) reflects the
total number of bytes sent (BS) to the downstream node ((S)RN in Fig. 3) from all
competing children nodes subtracting the contribution of a single flow belonging to the
superflow. C∗RN (kT ) can be expressed as C∗RN = BS − xRN (kT )

n .
Source-Relay Node (SRN) : A source-relay node (SRN) acts as both source and relay
node, having both functions concurrently operated as described above.

5 Performance Evaluation

Simulation studies were used to investigate how parameters affect the performance of
our mechanism in terms of sensitivity to parameters, scalability and global fairness.

As discussed above, the rates of all flows converge to a global and asymptotically
stable solution when β > α (α, β > 0). There is no upper limitation on β but as
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it becomes larger, the steady state traffic rate (Eq. 4) decreases. In this case, each node
will have to transmit data at a lower rate leading to lower quality of the received streams
at the sink. As far as r is concerned, the system of Eq. 1 has a stable equilibrium point
for any value of r > 0 [4], [14]. An upper bound for r is not analytically known,
thus can be experimentally explored. The mathematical analysis of our model gives a
general understanding of the system’s behavior on the basis of stability as function of
the α and β. However, the complexity of an ADN necessitates simulation evaluation
using plausible scenarios that cannot be formally tested. The analytical study serves as
the basis for the simulations.

In order to supplement the analytical results, some simulation experiments were
conducted both in Matlab and in NS2. We considered a wireless sensor network consist-
ing of 25 nodes which are deployed in a cluster-based topology (Fig. 4). Our mechanism
was evaluated in a static and failure-free environment. All nodes were assumed to have
the same buffer capacity K = 35KB. The time period T between successive evalua-
tions of the number of bytes sent by each SN, as well as the time between backpressure
signals was set to 1 sec. It was assumed that nodes 5, 6, 10, 14, 16 and 20 were activated
at 1T , 50T , 150T , 300T , 450T , 600T and 900 respectively. Node 14 was deactivated
at 750T . Stability and Sensitivity: Based on the analytical study of our model [4], the
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Fig. 4. Experimental cluster-based topology (all links are wireless).

satisfiability of some conditions contributes to system’s stability. Their validity was fur-
ther investigated by simulating complex scenarios that cannot be formally tested. It has
been mathematically proved that if β > α, then all sending rates converge to a stable
equilibrium value ∀r (detailed proofs in [4]). Initially, α and r were set equal to 1 while
the value of β varied.

Fig. 5(a) depicts the estimated number of bytes that can be sent per T from each
active node when β = 2. As can be observed, the system was able to re-converge to a
new stable point after a change in network state (node activation). However, fluctuations
in sending rates arose when (previously inactive) downstream nodes were not prepared
to accommodate the increasing incoming traffic before Eq. 6 converged. This behavior
was exhibited by flows initiated from nodes 10, 16 and 20. These flows were not well
behaved but exhibited some oscillatory behavior after changes in network state. Also,
some fluctuations occurred when the flow of node 14 was deactivated. Note that buffer
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Fig. 5. Estimated bytes sent/sec: (a) β = 2, (b) β = 4, when α = 1 and r = 1.

overflows never occurred since the amount of traffic that was sent by each flow was
small compared with the downstream node’s buffer capacity.

When β increased to 4 (Fig. 5(b)) all flows became well-behaved while some small
oscillations occurred as a result of changes in network state. Even though there is no
upper bound for β value, it is worth pointing out that as β increases, the equilibrium
value decreases (see Eq. 4) and the quality of the received data at the sink may be
reduced. Increasingly, the results of Fig. 5(a) and (b) suggest that β should be greater
than α but greater enough (this may depends on n) such that each node can allocate
much less than K/n. This observation is supported by Fig. 6(a) (α = 3, β = 4). When
β is much greater than α, high buffer utilization is prevented, while smooth and stable
response of traffic flows is achieved. In all the previous scenarios, the parameter r was
set to 1. Further simulation studies were carried out in order to study the influence of
r on stability. Results showed that the stability of traffic flows rates depends on r but
a different behavior was observed with the change in parameters α and β. In general,
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Fig. 6. Estimated bytes sent/sec: (a) α = 3, β = 4, r = 1, (b) α = 1, β = 3, r = 4.
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it was shown that the flow sending rates converged when r ≤ 2.5 for quite a large
number of combinations of α and β values. Therefore, r could not grow unboundedly
but smooth network operation could be preserved in low r values (≤ 2.5). Fig. 6(b)
illustrates large fluctuations in flow sending rates occurred for α = 1, β = 3, r = 4.
Scalability and Fairness: The system proved to be adaptable against changing traffic
load and achieved scalability by sharing buffer capacity of nodes to their active up-
stream nodes. For example in Fig. 5(b), in the presence of one sender (node 5) the
stable equilibrium point of the system given by Eq. 4 was 8750 bytes/T (clusterhead
node 1 transmitted at the same rate). When node 6 became active, each sender obtained
7000 bytes/T , while the downstream node 1 (clusterhead) was able to accommodate
both senders by increasing its rate using Eq. 6. When the number of senders scaled
up, all senders could be supported by the system by diminishing the sending rate per
node, thus offering graceful degradation. Fairness was also achieved having the avail-
able buffer capacity of each node equally shared among all activated flows.

Further simulations were conducted using the discrete event based simulator NS2
in order to evaluate the performance of the LVCC mechanism under more realistic net-
work conditions (in terms of packet loss and delay) when multiple users are involved.
Performance was measured in terms of the packet delivery ratio (PDR), which is de-
fined as the ratio of the total number of packets received by the sink to the total number
of packets transmitted by source nodes. The following table presents the combinations
of α and β values (r = 1) that achieved the highest transmission rates (bytes sent per
T ) and the highest mean PDR for different number of active nodes. It is worth pointing
out that only the scenarios where traffic flows of all active nodes converged to stable
solutions were taken into consideration.

Table 1. Performance evaluations for realistic network conditions using NS2 [5].

No. of Active Mean Packet
α β Nodes Delivery Ratio
1.6 3.3 3 0.99
1.5 4.5 5 0.99
1.7 6.0 7 0.88
1.4 6.2 10 0.70
1.6 6.5 15 0.64
1.9 6.5 20 0.62

The results of Table 1 support previous results obtained from Matlab simulations.
It can be seen that as the number of active nodes scaled up, stable response of traffic
flows was achieved with the increase of parameter β. On the other hand, α remained
from 1.5 to 1.9 regardless of the number of active nodes. In addition, the mean PDR
decreased below 70% when more than 10 active nodes were concurrently activated in
the topology of Fig. 4. This is due to the fact that the network resources (e.g. wireless
channel capacity) were incapable of sustaining such a large number of active nodes,
resulting in high packet losses.
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6 Conclusions and Future Work

This study investigates how nature inspired models can be employed to prevent con-
gestion in ADNs. Inspiration from biological processes is drawn where global prop-
erties e.g., self-adaptation and scalability are achieved collectively without explicitly
programming them into individual nodes, using simple computations at the node level.

Motivated by the famous LV competition model, a rate-based, hop-by-hop CC mech-
anism (LVCC) was designed which aims at controlling the traffic flow rate at each send-
ing node. Simulations were performed to understand how the variations of the model’s
parameters influence stability and sensitivity. Simulation studies validated the correct-
ness of analytical results of [4] and showed that our model achieves scalability, graceful
performance degradation, adaptability and fairness. Realistic scenarios of network oper-
ation were also taken into consideration. However, for future work, further simulations
for generalized network cases are required. Also a study of the behavior of our mech-
anism is needed when dynamic network conditions in terms of offered traffic load and
node failures are considered.
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